Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 373: 114679, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38190933

RESUMO

INTRODUCTION: We studied spatiotemporal features of acute transcriptional inflammatory response induced by a focal brain injury in distant uninjured neuronal tissue and a role of endocannabinoid (eCB) system in its control. MATERIALS AND METHODS: A focal excitotoxic lesion was induced by a unilateral injection of kainate in the dorsal hippocampus of awake Wistar rats. During acute post-injury period (3 h and 24 h post-injection), mRNA levels of genes associated with neuroinflammation (Il1b, Il6, Tnf, Ccl2; Cx3cl1, Zc3 h12a, Tgfb1) and eCB receptors of CB1 and CB2 types (Cnr1 and Cnr2) in intact regions of the hippocampus and neocortex were measured using qPCR. Occurrence of acute symptomatic seizures was controlled electrographically. To modulate eCB signaling during injury and acute post-injury period, antagonists (AM251, AM630) and agonist (WIN55-212-2) of eCB receptors were administered before the injury induction. RESULTS: Local intrahippocampal injury triggered widespread time- and region-dependent neuroinflammation in undamaged brain regions remote from the lesion site. The distant areas of the hippocampus and hippocampal meninges exhibited early (3 h) transient upregulation of pro- and anti-inflammatory cytokines simultaneously with occurrence of acute symptomatic seizures. The neocortex and its meninges showed minor neuroinflammation early after injury (3 h) but later (24 h) significantly upregulated several genes, mainly with anti-inflammatory properties. Focal lesion also changed expression of eCB receptors in the distant extra-lesional regions - CB1 receptors at 3 h and both CB1 and CB2 receptors at 24 h. Within the hippocampus, significant regional differences in constitutive and post-injury expression CB1 receptors were found. Pharmacological blockade of eCB receptors during injury and early post-injury period lengthened hippocampal neuroinflammation and reversed upregulation of anti-inflammatory molecules in the neocortex. CONCLUSION: The findings show that focal brain injury rapidly triggers widespread parenchymal and extraparenchymal neuroinflammation. The early injury-induced response is likely to represent neurogenic neuroinflammation produced by network hyperexcitability (acute symptomatic seizures). Activation of eCB signaling during acute phase of the brain injury is important for initiation of adaptive anti-inflammatory processes and prevention of chronic pathologic neuroinflammation in distant uninjured structures. However, the beneficial role of injury-induced eCB activity appears to depend on many factors including time, brain region, eCB tone etc.


Assuntos
Lesões Encefálicas , Endocanabinoides , Ratos , Animais , Endocanabinoides/metabolismo , Ratos Wistar , Doenças Neuroinflamatórias , Hipocampo/metabolismo , Convulsões , Lesões Encefálicas/etiologia , Anti-Inflamatórios , Receptor CB1 de Canabinoide/metabolismo
2.
J Headache Pain ; 25(1): 8, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225575

RESUMO

BACKGROUND: Spreading depolarization (SD), underlying mechanism of migraine aura and potential activator of pain pathways, is known to elicit transient local silencing cortical activity. Sweeping across the cortex, the electrocorticographic depression is supposed to underlie spreading negative symptoms of migraine aura. Main information about the suppressive effect of SD on cortical oscillations was obtained in anesthetized animals while ictal recordings in conscious patients failed to detect EEG depression during migraine aura. Here, we investigate the suppressive effect of SD on spontaneous cortical activity in awake animals and examine whether the anesthesia modifies the SD effect. METHODS: Spectral and spatiotemporal characteristics of spontaneous cortical activity following a single unilateral SD elicited by amygdala pinprick were analyzed in awake freely behaving rats and after induction of urethane anesthesia. RESULTS: In wakefulness, SD transiently suppressed cortical oscillations in all frequency bands except delta. Slow delta activity did not decline its power during SD and even increased it afterwards; high-frequency gamma oscillations showed the strongest and longest depression under awake conditions. Unexpectedly, gamma power reduced not only during SD invasion the recording cortical sites but also when SD occupied distant subcortical/cortical areas. Contralateral cortex not invaded by SD also showed transient depression of gamma activity in awake animals. Introduction of general anesthesia modified the pattern of SD-induced depression: SD evoked the strongest cessation of slow delta activity, milder suppression of fast oscillations and no distant changes in gamma activity. CONCLUSION: Slow and fast cortical oscillations differ in their vulnerability to SD influence, especially in wakefulness. In the conscious brain, SD produces stronger and spatially broader depression of fast cortical oscillations than slow ones. The frequency-specific effects of SD on cortical activity of awake brain may underlie some previously unexplained clinical features of migraine aura.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Epilepsia , Enxaqueca com Aura , Humanos , Ratos , Animais , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Enxaqueca com Aura/etiologia , Encéfalo , Cabeça , Epilepsia/etiologia
3.
Exp Neurol ; 368: 114480, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37454711

RESUMO

Functional connectivity analysis is gaining more interest due to its promising clinical applications. To study network mechanisms underlying seizure termination and postictal depression, we explore dynamics of interhemispheric functional connectivity near the offset of focal and bilateral seizures in the experimental model of reflex audiogenic epilepsy. In the model, seizures and spreading depression are induced by sound stimulation of genetically predisposed rodents. We characterize temporal evolution of seizure-associated coupling dynamics in the frontoparietal cortex during late ictal, immediate postictal and interictal resting states, using two measures applied to local field potentials recorded in awake epileptic rats. Signals were analyzed with mean phase coherence index in delta (1-4 Hz), theta (4-10 Hz) beta (10-25 Hz) and gamma (25-50 Hz) frequency bands and mutual information function. The study shows that reflex seizures elicit highly dynamic changes in interhemispheric functional coupling with seizure-, region- and frequency-specific patterns of increased and decreased connectivity during late ictal and immediate postictal periods. Also, secondary generalization of recurrent seizures (kindling) is associated with pronounced alterations in resting-state functional connectivity - an early wideband decrease and a subsequent beta-gamma increase. The findings show that intracortical functional connectivity is dynamically modified in response to seizures on short and long timescales, suggesting the existence of activity-dependent plastic network alterations that may promote or prevent seizure propagation within the cortex and underlie postictal behavioral impairments.


Assuntos
Epilepsia , Excitação Neurológica , Ratos , Animais , Eletroencefalografia , Convulsões , Reflexo
4.
Epilepsy Res ; 192: 107135, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37023553

RESUMO

The role of the hippocampus (Hp) in absence epileptic networks and the effect of endocannabinoid system on this network remain enigmatic. Here, using adapted nonlinear Granger causality, we compared the differences in network strength in four intervals (baseline or interictal, preictal, ictal and postictal) in two hours before (Epoch 1) and six hours (epochs 2, 3 and 4) after the administration of three different doses of the endocannabinoid agonist WIN55,212-2 (WIN) or solvent. Local field potentials were recorded for eight hours in 23 WAG/Rij rats in the Frontal (FC), Parietal PC), Occipital Cortex (OC) and in the hippocampus (Hp). The four intervals were visually marked by an expert neurophysiologist and the strength of couplings between electrode pairs were calculated in both directions. Ictally, a strong decrease in coupling strength was found between Hp and FC, as well as a large increase bidirectionally between PC and FC and unidirectionally from FC and PC to OC, and from FC to Hp over all epochs. The highest dose of WIN increased the couplings strength from FC to Hp and from OC to PC during 4 and 2 hr respectively in all intervals, and decreased the FC to PC coupling strength postictally in epoch 2. A single rat showed generalized convulsive seizures after the highest dose: this rat shared not only coupling changes with the other rats in the same condition, but showed many more. WIN reduced SWD number in epoch 2 and 3, their mean duration increased in epochs 3 and 4. Conclusions:during SWDs FC and PC are strongly coupled and drive OC, while at the same time the influence of Hp to FC is diminished. The first is in agreement with the cortical focus theory, the latter demonstrates an involvement of the hippocampus in SWD occurrence and that ictally the hippocampal control of the cortico-thalamo-cortical system is lost. WIN causes dramatic network changes which have major consequences for the decrease of SWDs, the occurrence of convulsive seizures, and the normal cortico-cortical and cortico-hippocampal interactions.


Assuntos
Agonistas de Receptores de Canabinoides , Epilepsia Tipo Ausência , Ratos , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Eletroencefalografia , Endocanabinoides , Modelos Animais de Doenças , Epilepsia Tipo Ausência/tratamento farmacológico , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Hipocampo
5.
Biomedicines ; 10(9)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36140284

RESUMO

Spreading depolarization (SD), a self-propagated wave of transient depolarization, regularly occurs in the cortex after acute brain insults and is now referred as an important diagnostic and therapeutic target in patients with acute brain injury. Here, we show that the amygdala, the limbic structure responsible for post-injury neuropsychological symptoms, exhibits strong regional heterogeneity in vulnerability to SD with high susceptibility of its basolateral (BLA) region and resilience of its centromedial (CMA) region to triggering SD by acute focal damage. The BLA micro-injury elicited SD twice as often compared with identical injury of the CMA region (71% vs. 33%). Spatiotemporal features of SDs triggered in the amygdala indicated diverse patterns of the SD propagation to the cortex. Our results suggest that even relatively small cerebral structures can exhibit regional gradients in their susceptibility to SD and the heterogeneity may contribute to the generation of complex SD patterns in the injured brain.

6.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613527

RESUMO

Cortical spreading depolarization (CSD) is the neuronal correlate of migraine aura and the reliable consequence of acute brain injury. The role of CSD in triggering headaches that follow migraine aura and brain injury remains to be uncertain. We examined whether a single CSD occurring in awake animals modified the expression of proinflammatory cytokines (Il1b, TNF, and Il6) and endogenous mediators of nociception/neuroinflammation-pannexin 1 (Panx1) channel and calcitonin gene-related peptide (CGRP), transforming growth factor beta (TGFb) in the cortex. Unilateral microinjury of the somatosensory cortex triggering a single CSD was produced in awake Wistar rats. Three hours later, tissue samples from the lesioned cortex, intact ipsilesional cortex invaded by CSD, and homologous areas of the contralateral sham-treated cortex were harvested and analyzed using qPCR. Three hours post-injury, intact CSD-exposed cortexes increased TNF, Il1b, Panx1, and CGRP mRNA levels. The strongest upregulation of proinflammatory cytokines was observed at the injury site, while CGRP and Panx1 were upregulated more strongly in the intact cortexes invaded by CSD. A single CSD is sufficient to produce low-grade parenchymal neuroinflammation with simultaneous overexpression of Panx1 and CGRP. The CSD-induced molecular changes may contribute to pathogenic mechanisms of migraine pain and post-injury headache.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Epilepsia , Transtornos de Enxaqueca , Ratos , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Citocinas/genética , Citocinas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Doenças Neuroinflamatórias , Ratos Wistar , Córtex Cerebral/metabolismo , Transtornos de Enxaqueca/metabolismo , Interleucina-1/metabolismo , Epilepsia/metabolismo
7.
Behav Brain Res ; 416: 113559, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34453972

RESUMO

Spreading depolarization (SD), a self-propagating wave of near-complete breakdown of the transmembrane ion gradients with water influx, regularly occurs in traumatized human brain. Here, we investigated long-term neurobehavioral consequences of injury-triggered SDs. Recently, we revealed that SD is reliably triggered by micro-injury of the amygdala, a key brain structure involved in fear processing. Using the classical Pavlovian fear conditioning paradigm, we investigated effects of the post-retrieval amygdala micro-injury and associated SD on fear memory in rats. We found that neither SD nor micro-injury alone affect fear response 24 h later but profoundly change it in subsequent extinction phase. If bilateral injury of the amygdala did not induce SD, fear extinction was severely impaired, while conditioned fear in rats with the identical amygdala injury triggering SD was successfully extinguished similarly to naïve rats. Our study provides first experimental evidence for involvement of injury-induced SD in extinction of traumatic fear memory.


Assuntos
Tonsila do Cerebelo/lesões , Condicionamento Clássico/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Memória/fisiologia , Animais , Masculino , Ratos
8.
Mol Neurobiol ; 58(8): 4028-4037, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33907944

RESUMO

We compared neuroinflammatory responses induced by nonconvulsive and convulsive seizures and analyzed the role that may be played by cannabinoid CB2 receptors in the neuroinflammatory response induced by generalized tonic-clonic seizures (GTCS). Using quantitative PCR, we analyzed expression of interleukin-1b, CCL2, interleukin-6, tumor necrosis factor (TNF), transforming growth factor beta 1 (TGFb1), fractalkine, and cannabinoid receptor type 2 in the neocortex, dorsal and ventral hippocampus, cortical leptomeninges, dura mater, and spleen in 3 and 6 h after induction of GTCS by a high dose of pentylenetetrazole (PTZ, 70 mg/kg) and absence-like activity by a low dose of PTZ (30 mg/kg). The low dose of PTZ had no effect on the gene expression 3 and 6 h after PTZ injection. In 3 and 6 h after high PTZ dose, the expression of CCL2 and TNF increased in the neocortex. Both ventral and dorsal parts of the hippocampus responded to seizures by elevation of CCL2 expression 3 h after PTZ. Cortical leptomeninges but not dura mater also had elevated CCL2 level and decreased TGFb1 expression 3 h after GTCS. Activation of CB2 receptors by HU308 suppressed an inflammatory response only in the dorsal hippocampus but not neocortex. Suppression of CB2 receptors by AM630 potentiated expression of inflammatory cytokines also in the hippocampus but not in the neocortex. Thus, we showed that GTCS, but not the absence-like activity, provoke inflammatory response in the neocortex, dorsal and ventral hippocampus, and cortical leptomeninges. Modulation of CB2 receptors changes seizure-induced neuroinflammation only in the hippocampus but not neocortex.


Assuntos
Citocinas/metabolismo , Hipocampo/metabolismo , Mediadores da Inflamação/metabolismo , Neocórtex/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Convulsões/metabolismo , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Eletroencefalografia/métodos , Hipocampo/fisiopatologia , Indóis/farmacologia , Masculino , Neocórtex/fisiopatologia , Ratos , Ratos Wistar , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores , Convulsões/fisiopatologia
9.
Cephalalgia ; 41(3): 353-365, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33164563

RESUMO

OBJECTIVE: Growing evidence shows a critical role of network disturbances in the pathogenesis of migraine. Unilateral pattern of neurological symptoms of aura suggests disruption of interhemispheric interactions during the early phase of a migraine attack. Using local field potentials data from the visual and motor cortices, this study explored effects of unilateral cortical spreading depression, the likely pathophysiological mechanism of migraine aura, on interhemispheric functional connectivity in freely behaving rats. METHODS: Temporal evolution of the functional connectivity was evaluated using mutual information and phase synchronization measures applied to local field potentials recordings obtained in homotopic points of the motor and visual cortices of the two hemispheres in freely behaving rats after induction of a single unilateral cortical spreading depression in the somatosensory S1 cortex and sham cortical stimulation. RESULTS: Cortical spreading depression was followed by a dramatic broadband loss of interhemispheric functional connectivity in the visual and motor regions of the cortex. The hemispheric disconnection started after the end of the depolarization phase of cortical spreading depression, progressed gradually, and terminated by 5 min after initiation of cortical spreading depression. The network impairment had region- and frequency-specific characteristics and was more pronounced in the visual cortex than in the motor cortex. The period of impaired neural synchrony coincided with post-cortical spreading depression electrographic aberrant activation of the ipsilateral cortex and abnormal behavior. CONCLUSION: The study provides the first evidence that unilateral cortical spreading depression induces a reversible loss of functional hemispheric connectivity in the cortex of awake animals. Given a critical role of long-distance cortical synchronization in sensory processing and sensorimotor integration, the post-cortical spreading depression breakdown of functional connectivity may contribute to neuropathological mechanisms of aura generation.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Animais , Enxaqueca com Aura , Ratos , Córtex Somatossensorial , Vigília
10.
Neurol Res ; 42(1): 76-82, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31900075

RESUMO

Objectives: Spreading depolarization (SD) is a well-recognized component of the stress response of the cortex to its acute injury. Cortical SD has been shown to occur in severe brain insults and standard neurosurgical procedures in patients and is supposed to promote delayed secondary brain injuries. Stereotactic surgery and site-specific intracerebral microinjections produce a small tissue injury when a thin needle is inserted directly into the brain parenchyma (via the cannula guide). The present study was designed to examine whether such a parenchymal damage can trigger SD.Methods: Experiments were performed in awake freely moving rats with simultaneous video-monitoring of behavior and recording of SD-related DC potentials in the cortex and striatum. A parenchymal damage was produced by 1-mm protruding of thin (0.3-mm diameter) cannula beyond the tip of cannula guide preliminary implanted into the amygdala or deep cortical layers.Results: We found that the micro-injury of the brain parenchyma the volume of which did not exceed 0.3 mm3 was sufficient to initiate SD in a very high proportion of rats (75-100%). The amygdala showed increased resistance against the injury-induced SD compared to the cortex. We further showed that SD triggered by the local micro-injury invaded remote intact regions of the cortico-striatal system and evoked specific changes in spontaneous animal behavior.Discussion: The findings indicate that SD may represent a previously unidentified side effect of local parenchymal injury during site-specific microinjections and stereotactic surgery.


Assuntos
Concussão Encefálica/fisiopatologia , Encéfalo/fisiopatologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Tecido Parenquimatoso/lesões , Tecido Parenquimatoso/fisiopatologia , Animais , Concussão Encefálica/complicações , Masculino , Microinjeções/efeitos adversos , Ratos , Ratos Wistar , Córtex Somatossensorial/fisiopatologia
11.
Epilepsy Behav ; 92: 71-78, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30634156

RESUMO

Mood and anxiety disorders, as well as memory impairments, are important factors affecting quality of life in patients with epilepsy and can influence the antiepileptic therapy. Clinical studies of psychiatric comorbidities are quite complicated to design and interpret, so animal studies of behavioral impairments associated with seizures can be of use. We investigated the effect of early administration of endocannabinoid receptor agonist WIN-55,212-2 on the development of spontaneous seizures, long-term behavioral and memory impairments, and neurodegeneration in the hippocampus on the lithium-pilocarpine model of status epilepticus (SE). We also studied the role of spontaneous seizures in the development of pathologic consequences of the SE. Our results showed that behavioral impairments found in the elevated plus maze test depended mostly on the consequences of SE itself and not on the development of spontaneous seizures while hyperactivity in the open-field test and light-dark chamber was more prominent in rats with spontaneous seizures. Administration of WIN-55,212-2 decreased emotional behavior in the elevated plus maze but did not affect hyperactive behavior in the open-field test. Spatial memory impairment developed both in the presence or absence of spontaneous seizures and was not affected by administration of WIN-55,212-2. Both administration of endocannabinoid receptor agonist WIN-55,212-2 and the presence of spontaneous seizures affected SE-induced neuronal loss in the hippocampus.


Assuntos
Modelos Animais de Doenças , Endocanabinoides/metabolismo , Cloreto de Lítio/uso terapêutico , Locomoção/fisiologia , Pilocarpina/toxicidade , Estado Epiléptico/metabolismo , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Benzoxazinas/farmacologia , Endocanabinoides/agonistas , Hipocampo/patologia , Cloreto de Lítio/farmacologia , Locomoção/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Morfolinas/farmacologia , Naftalenos/farmacologia , Ratos , Ratos Wistar , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/metabolismo , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico
12.
Epilepsy Behav ; 87: 195-199, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30107985

RESUMO

Transient postictal behavioral impairments in patients with epilepsy provide clues to seizure localization, but no attempt has been made previously to study the localization/lateralization value of postseizure motor disturbances in experimental models of epilepsy. The present study investigated relation of postictal motor deficit to seizure localization in the rat model of sound-induced reflex epilepsy. Sound-induced motor seizures started with a focal brainstem seizure (running) and progressed to a secondarily generalized seizure. Depending on innate or acquired seizure susceptibility of rats, focal brainstem seizures secondarily generalized within the brainstem (brainstem-generalized seizures) or spread to the forebrain (focal or generalized forebrain seizures). All sound-induced seizures were followed by catalepsy and abnormal limb posturing. The duration of the postictal catalepsy and the pattern of the posture abnormality depended on brainstem or forebrain localization of secondarily generalized seizures. Brainstem-driven seizures induced long-lasting whole-body catalepsy and cataleptic limb posture in the postictal period. Secondary seizure generalization to the forebrain led to shortening postictal catalepsy and development of rigid limb posturing. Asymmetric limb posturing was always observed after focal forebrain seizures, and the postictal asymmetry was closely linked to ictal asymmetry of the earliest running seizure phase, predicting lateralization of the seizure-onset side. This is the first demonstration of circuit-specific postictal behavioral impairments and their localization and lateralization values in epileptic rats.


Assuntos
Estimulação Acústica/efeitos adversos , Tronco Encefálico/fisiopatologia , Epilepsia Reflexa/fisiopatologia , Postura/fisiologia , Prosencéfalo/fisiopatologia , Animais , Eletroencefalografia/métodos , Extremidades/fisiologia , Masculino , Ratos , Ratos Wistar , Convulsões/fisiopatologia
13.
Cephalalgia ; 38(6): 1177-1187, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28750590

RESUMO

Background Cortical spreading depression (SD) is thought to underlie migraine aura but mechanisms of triggering SD in the structurally normal, well-nourished cortex of migraine patients remain unknown. Synaptic and network dysfunctions appear to underlie episodic neurological disorders, including migraine. The narrative review summarizes old and recent experimental evidence for triggering SD by synaptic/network mechanisms and discusses the relevance of the data to migraine pathogenesis. Our hypothesis is that under some conditions synaptic/network hyperactivity may reliably ignite SD, and this mechanism may underlie triggering migraine aura in patients. Findings High-frequency tetanic stimulation of the cortex reliably triggers SD in synaptically connected regions; SD is a reliable cortical response to acute hyperexcitability (epileptic seizures), though chronic epilepsy prevents triggering SD; in the hyperexcitable cortex, SD may be triggered by sensory stimulation; compromised glutamatergic transmission plays the critical role in triggering SD. Conclusion SD may be triggered by dynamic network instability produced by dysfunction of calcium-dependent glutamate release. Synaptic drive from subcortical sensory processing structures (brainstem and/or thalamocortical networks) is able to evoke depolarization of hyperexcitable cortical neurons sufficient to initiate the regenerative SD process. Studying SD initiation by synaptic/network hyperexcitability may provide insights into basic mechanisms underlying SD generation in migraine brain.


Assuntos
Encéfalo/fisiopatologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Enxaqueca com Aura/fisiopatologia , Animais , Humanos
14.
Epilepsy Behav ; 71(Pt B): 142-153, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-26148984

RESUMO

Human epilepsy is usually considered to result from cortical pathology, but animal studies show that the cortex may be secondarily involved in epileptogenesis, and cortical seizures may be triggered by extracortical mechanisms. In the audiogenic kindling model, recurrent subcortical (brainstem-driven) seizures induce secondary epileptic activation of the cortex. The present review focuses on behavioral and electrographic features of the subcortico-cortical epileptogenesis: (1) behavioral expressions of traditional and mild paradigms of audiogenic kindling produced by full-blown (generalized) and minimal (focal) audiogenic seizures, respectively; (2) electrographic manifestations of secondary epileptic activation of the cortex - cortical epileptic discharge and cortical spreading depression; and (3) persistent individual asymmetry of minimal audiogenic seizures and secondary cortical events produced by their repetition. The characteristics of audiogenic kindling suggest that this model represents a unique experimental approach to studying cortical epileptogenesis and network aspects of epilepsy. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic".


Assuntos
Estimulação Acústica/efeitos adversos , Modelos Animais de Doenças , Eletroencefalografia/tendências , Epilepsia Reflexa/fisiopatologia , Excitação Neurológica/fisiologia , Atividade Motora/fisiologia , Animais , Tronco Encefálico/fisiopatologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Eletroencefalografia/métodos , Epilepsia Reflexa/genética , Humanos , Ratos , Ratos Wistar , Convulsões/genética , Convulsões/fisiopatologia
15.
Epilepsy Behav ; 64(Pt A): 44-50, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27728902

RESUMO

PURPOSE: Spike-and-wave discharges (SWDs) recorded in the cortical EEGs of WAG/Rij rats are the hallmark for absence epilepsy in this model. Although this type of epilepsy was long regarded as a form of primary generalized epilepsy, it is now recognized that there is an initiation zone - the perioral region of the somatosensory cortex. However, networks involved in spreading the seizure are not yet fully known. Previously, the dynamics of coupling between different layers of the perioral cortical region and between these zones and different thalamic nuclei was studied in time windows around the SWDs, using nonlinear Granger causality. The aim of the present study was to investigate, using the same method, the coupling dynamics between different regions of the cortex and between these regions and the hippocampus. METHODS: Local field potentials were recorded in the frontal, parietal, and occipital cortices and in the hippocampus of 19 WAG/Rij rats. To detect changes in coupling reliably in a short time window, in order to provide a good temporal resolution, the innovative adapted time varying nonlinear Granger causality method was used. Mutual information function was calculated in addition to validate outcomes. Results of both approaches were tested for significance. RESULTS: The SWD initiation process was revealed as an increase in intracortical interactions starting from 3.5s before the onset of electrographic seizure. The earliest preictal increase in coupling was directed from the frontal cortex to the parietal cortex. Then, the coupling became bidirectional, followed by the involvement of the occipital cortex (1.5s before SWD onset). There was no driving from any cortical region to hippocampus, but a slight increase in coupling from hippocampus to the frontoparietal cortex was observed just before SWD onset. After SWD onset, an abrupt drop in coupling in all studied pairs was observed. In most of the pairs, the decoupling rapidly disappeared, but driving force from hippocampus and occipital cortex to the frontoparietal cortex was reduced until the SWD termination. CONCLUSION: Involvement of multiple cortical regions in SWD initiation shows the fundamental role of corticocortical feedback loops, forming coupling architecture and triggering the generalized seizure. The results add to the ultimate aim to construct a complete picture of brain interactions preceding and accompanying absence seizures in rats.


Assuntos
Córtex Cerebral/fisiopatologia , Epilepsia Tipo Ausência/fisiopatologia , Hipocampo/fisiopatologia , Rede Nervosa/fisiopatologia , Animais , Modelos Animais de Doenças , Eletroencefalografia , Masculino , Ratos , Ratos Wistar
16.
Neuroscience ; 334: 191-200, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27520083

RESUMO

An acute brain insult can cause a spectrum of primary and secondary pathologies including increased risk for epilepsy, mortality and neurodegeneration. The endocannabinoid system, involved in protecting the brain against network hyperexcitability and excitotoxicity, is profoundly dysregulated by acute brain insults. We hypothesize that post-insult dysregulation of the endocannabinoid signaling may contribute to deleterious effects of an acute brain injury and potentiation of endocannabinoid transmission soon after an insult may reduce its pathological outcomes. Effects of an acute post-insult administration of the endocannabinoid receptor agonist WIN55,212-2 on early seizure occurrence, animal mortality and hippocampal cell loss were studied in the lithium-pilocarpine status model. A single dose of WIN55,212-2 (5mg/kg) administered four hours after the end of status epilepticus (SE) reduced the incidence of early seizures during the first two post-SE days though did not change their duration and latency. Brief 4-6-Hz spike-wave discharges appeared de novo in the latent post-SE period and the acute administration of WIN55,212-2 also reduced the incidence of the epileptiform events. A single dose of WIN55,212-2 administered soon after SE improved survival of animals and reduced cell loss in the dentate hilus but did not prevent appearance of spontaneous recurrent seizures in the chronic period. Thus, a brief pharmacological stimulation of the endocannabinoid system soon after a brain insult exerts beneficial effects on its pathological outcome though does not prevent epileptogenesis.


Assuntos
Anticonvulsivantes/farmacologia , Benzoxazinas/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Morfolinas/farmacologia , Naftalenos/farmacologia , Estado Epiléptico/tratamento farmacológico , Animais , Giro Denteado/efeitos dos fármacos , Giro Denteado/patologia , Giro Denteado/fisiopatologia , Modelos Animais de Doenças , Eletrocorticografia , Compostos de Lítio , Masculino , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/fisiologia , Fármacos Neuroprotetores/farmacologia , Pilocarpina , Ratos Wistar , Convulsões/tratamento farmacológico , Convulsões/patologia , Convulsões/fisiopatologia , Estado Epiléptico/patologia , Estado Epiléptico/fisiopatologia , Análise de Sobrevida
17.
Brain Res ; 1635: 161-8, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26820637

RESUMO

It is now recognized that both generalized and focal seizures may originate in subcortical structures. The well-known types of focal subcortically-driven seizures are gelastic seizures in patients with the hypothalamic hamartoma and sound-induced seizures in rodents with audiogenic epilepsy. The seizures are generated by subcortical intrinsically epileptogenic focus, the hamartoma in humans and the inferior colliculus (IC) in rodents. In patients with gelastic epilepsy additional seizure types may develop with time that are supposed to result from secondary epileptogenesis and spreading of epileptic discharges to the cortex. Repeated audiogenic seizures can also lead to development of additional seizure behavior and secondary epileptic activation of the cortex. This process, named audiogenic kindling, may be useful for studying secondary subcortico-cortical epileptogenesis. Using intracollicular and intracortical recordings, we studied an ictal electrographic pattern of focal subcortical seizures induced by repeated sound stimulation in Wistar audiogenic-susceptible rats. The audiogenic seizures, representing brief attacks of paroxysmal unidirectional running, were accompanied by epileptiform abnormalities in the IC, mostly on the side ipsilateral to run direction, and enhanced rhythmic 8-9Hz activity in the cortex. With repetition of the subcortical seizures and kindling development, a secondary cortical discharge began to follow the IC seizure. The secondary discharge initially involved the cortex homolateral to the side of dominant subcortical epileptiform abnormalities and behaviorally expressed as limbic (partial) clonus. Kindling progression was associated with bilateralization of the secondary cortical discharge, an increase in its amplitude and duration, intensification of associated behavioral seizures (from partial clonus to generalized tonic-clonic convulsions). Thus, ictal recordings during brief audiogenic running seizures showed their focal subcortical origin. Repetition of the subcortical seizures may result in secondary subcortico-cortical epileptogenesis manifested by emergence and progressive intensification of epileptiform discharges in the cortex.


Assuntos
Córtex Cerebral/fisiopatologia , Epilepsia Reflexa/fisiopatologia , Colículos Inferiores/fisiopatologia , Convulsões/fisiopatologia , Estimulação Acústica , Animais , Ondas Encefálicas , Eletroencefalografia , Excitação Neurológica , Masculino , Ratos , Ratos Wistar
18.
Pharmacol Rep ; 67(3): 501-3, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25933961

RESUMO

BACKGROUND: Modulation of the endocannabinoid (eCB) transmission is a promising approach to treating epilepsy. Animal models can be used to investigate this approach. Krushinsky-Molodkina (KM) rats have, genetically, audiogenic epilepsy. Moreover, in these animals, repeated induction of audiogenic seizures results in a progressive prolongation of the seizures, known as audiogenic kindling. METHODS: The present study evaluated, in these KM rats, acute and long-term effects of a single dose of 4 mg/kg of the cannabinoid-receptor agonist WIN55,212-2. RESULTS: Administration of the single dose of WIN55,212-2 one hour before the 4th seizure delayed the kindling process by two weeks, without any acute effect on the audiogenic seizures. CONCLUSIONS: This result suggests that short-term potentiation of the eCB system might modify the epileptogenic disease process in patients with a progressive course of epilepsy.


Assuntos
Estimulação Acústica/efeitos adversos , Benzoxazinas/uso terapêutico , Canabinoides/uso terapêutico , Modelos Animais de Doenças , Endocanabinoides/agonistas , Epilepsia Reflexa/prevenção & controle , Morfolinas/uso terapêutico , Naftalenos/uso terapêutico , Estimulação Acústica/métodos , Animais , Benzoxazinas/farmacologia , Canabinoides/farmacologia , Epilepsia Reflexa/patologia , Masculino , Morfolinas/farmacologia , Naftalenos/farmacologia , Ratos , Fatores de Tempo , Resultado do Tratamento
19.
Cephalalgia ; 35(11): 979-86, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25516507

RESUMO

BACKGROUND: Migraine and epilepsy are highly co-morbid neurological disorders associated with episodic dysfunction of both cortical and subcortical networks. The study examined the interrelation between cortical spreading depression, the electrophysiological correlate of migraine aura and seizures triggered at cortical and brainstem levels by repeated sound stimulation in rats with acoustic hypersensitivity (reflex audiogenic epilepsy). METHOD: In awake, freely moving rats with innate audiogenic epilepsy, 25 episodes of running seizure (brainstem seizures) were induced by repeated sound stimulation. Spreading depression and seizures were recorded using implanted cortical electrodes. RESULTS: The first sound-induced brainstem seizures evoked neither spreading depression nor seizures in the cortex. With repetition, brainstem seizures began to be followed by a single cortical spreading depression wave and an epileptiform discharge. Spreading depression was more frequent an early cortical event than seizures: spreading depression appeared after 8.4 ± 1.0 repeated stimulations in 100% rats (n = 24) while cortical seizures were recorded after 12.9 ± 1.2 tests in 46% rats. Brainstem seizure triggered unilateral long-latency spreading depression. Bilateral short-latency cortical spreading depression was recorded only after intense cortical seizures. CONCLUSION: These data show that episodic brainstem activation is a potent trigger of unilateral cortical spreading depression. Development of intense seizures in the cortex leads to initiation of spreading depression in multiple cortical sites of both hemispheres.


Assuntos
Tronco Encefálico/fisiopatologia , Córtex Cerebral/fisiopatologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Enxaqueca com Aura/fisiopatologia , Convulsões/fisiopatologia , Estimulação Acústica , Animais , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia Reflexa/fisiopatologia , Masculino , Ratos , Ratos Wistar , Vigília
20.
Epilepsy Res ; 96(3): 250-6, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21733658

RESUMO

Endocannabinoid system and its CB1 receptors are suggested to provide endogeneous protection against seizures. The present study examines whether CB1 receptors contribute to resistance to seizures and kindling epileptogenesis in a model of audiogenic epilepsy. Three groups of Wistar rats were used: rats unsusceptible to audiogenic seizures, rats with acquired resistance to audiogenic seizures and rats with reproducible audiogenic running seizures. Chronic treatment with the CB1 receptor antagonist SR141716 (5 daily dosing of 30mg/kg) did not change innate resistance to audiogenic seizures in non-epileptic rats but reverted acquired seizure resistance in rats which lost their epileptic sensitivity with repeated testing. In the latter rats, audiogenic running seizures reappeared for at least two weeks after the end of treatment. In rats with reproducible seizure response, acutely, SR lengthened audiogenic seizures due to prolongation or appearance, de novo, of post-running limbic clonus without any effect on running seizure per se. This limbic component mimicked audiogenic kindling and indicated propagation of sound-induced brainstem seizure to the limbic forebrain. After chronic SR administration the incidence of the limbic clonus remained to be increased for at least two weeks. The present study supports the hypothesis about a role of CB1 receptors in endogeneous anticonvulsive mechanisms of the brain.


Assuntos
Epilepsia Reflexa/induzido quimicamente , Epilepsia Reflexa/fisiopatologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/fisiologia , Estimulação Acústica/efeitos adversos , Doença Aguda , Animais , Doença Crônica , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Excitação Neurológica/efeitos dos fármacos , Excitação Neurológica/fisiologia , Sistema Límbico/efeitos dos fármacos , Sistema Límbico/fisiopatologia , Masculino , Ratos , Ratos Wistar , Rimonabanto , Convulsões/induzido quimicamente , Convulsões/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...